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We study the structures of orthoposets forced by a combination of an extremum
principle (maximum number of comparable pairs or of edges in the Hasse diagram)
and an excluded substructure information. We show that in all interesting cases
this reduces at least asymptotically to the corresponding graph problems, and we
give the solution to some of these problems.

1. EXTREMUM PRINCIPLES FOR ORDER STRUCTURES

Extremum principles for the characterization of objects are an important
type of mathematical question that arises in many physical applications, but

up to now all these applications are either for analytic objects (variational

principles) or geometric objects (isoperimetric-type theorems, e.g., soap bub-

bles, crystals, etc.). In the following we wish to give an example of how

extremum principles can also be used for the characterization of order

structures.
As in the classical cases, the problem is given by a ground set 2 of

objects (e.g., orthoposets) on which a function c: 2 ® 5 (e.g., the number

of comparable pairs) has to be maximized, subject to some restrictions. The

restrictions define the set ! , 2 of admissible objects. Since our objects

are ordered by a substructure relation, it is a natural assumption that the
restrictions are given as forbidden substructures, i.e., as things that should

not occur (e.g., `no pentagons’ ). If ! is closed under taking substructures,

or c is monotone, then any restriction can be given that way. Also this

presentation is useful, since any subset of the forbidden substructures gener-

ates an outer approximation of !; comparing these approximations allows

us to find out which restrictions are important for the problem.
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The main difficulty with this approach is to find a useful function c
which is to be maximized. In fact, we have to restrict consideration in the

following to finite structures (which are not physically interesting), since we
do not know any reasonable function to maximize over infinite order struc-

tures. For finite structures we have the various counting functions, e.g., the

numbers of comparable pairs, of edges of the Hasse-diagram, of 0±1 valued

measures, etc. To make these have a maximum, we have to restrict the

cardinality of the underlying poset. So we wish to maximize some counting

function c over all orthoposets of 2n elements that do not contain some
specified suborthoposets.

2. THE NUMBER OF COMPARABLE PAIRS IN AN
ORTHOPOSET

In the following we will always study the set of orthoposets as object
type 2. An orthoposet (OP, # , ) is the simplest ordered orthostructure: it

consists of a poset (OP, # ) together with a self-mapping : OP ® OP
which involutive (x 5 x), antitone (x # y Û y # x), and an orthocomplement

( Ø $ x, y: x # y Ù x # y). Normally a minimum element 0 and a maximum

element 1 are added (Flachsmeyer, 1988); we prefer this equivalent version
since it allows nicer counting formulas (Brass, 1995). In the following we

often use the number of elements as index, e.g., OP2n denotes an orthoposet

of 2n elements.

An orthoposet (OP*, # *, *) is suborthoposet of (OP, # , ) if there

is an injective map v : OP* ® OP with v (x*) 5 v (x) and x , * y Þ v (x)

, v ( y).
The most obvious complexity measure for posets with a given number

of elements is the number of comparable pairs (x, y) P OP 3 OP with x ,
y; in the following we always count unordered comparable pairs, i.e., (x, y)

and ( y, x), only once. For this we have:

Theorem 1. The maximum number of pairs (x, y) with x , y possible
in an orthoposet with 2n elements is n 2 2 n. All extremal orthoposets can

be constructed as shown below.

The mapping (x, y) j (x, y) is an involution of OP 3 OP that maps

comparable pairs on incomparable pairs. If we remove the diagonal pairs

(x, x) and the antidiagonal pairs (x, x), which are interchanged by this mapping,

the remaining pairs have to contain at least as many incomparable pairs as
comparable pairs. Therefore an orthoposet OP with 2n elements contains at

most n 2 2 n pairs (x, y) with x , y.
To describe the structure of all orthoposets that reach this bound, we

have to give a definition. We call an orthoposet complete if it is of height
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two, and any lower element is comparable to any upper element unless they

are complements of each other. So the complete orthoposet K OP
2n of 2n elements

consists of n lower elements x1, . . . , xn and n upper elements x1, . . . , xn

with xi , xj iff i Þ j. The complete orthoposet K OP
2n has n 2 2 n pairs {xi ,

xj} , K OP
2n with xi , xj, so it is extremal.

To construct now from a given extremal orthoposet OP2m with 2m
elements a new extremal orthoposet OP2m+2k with 2m 1 2k elements, we

select a minimum element y P OP2m , together with the corresponding maxi-

mum element y, and join them to a K OP
2k with the new elements {x1, . . . , xk ,

xi, . . . , xk} by xi , y, xi . y for all i, and xi , xj for i Þ j. This new

orthoposet is again extremal, since each of the elements of OP2m is comparable

either to all xi or to all xi, giving a total of m 2 2 m 1 k 2 2 k 1 2mk 5
(m 1 k)2 2 (m 1 k) comparable unordered pairs. Figure 1 shows the Hasse

diagram of an orthoposet constructed in this way, the complementarity being

given by a reflection along a horizontal line.
To show that each extremal set OP2n can be obtained in this way, we

note that in an extremal set there are the same number of comparable and

incomparable pairs, so (x, y) j (x, y) also maps incomparable pairs on

comparable pairs. This implies in particular that any suborthoposet of height

2 must be a complete orthoposet. There are many such suborthoposets , for
if A is an antichain, then A ø A induces a suborthoposet of height 2. The

lower elements of this suborthoposet again form an antichain with cardinality

at least | A | .
Let now x and y be elements such that x is minimal, y is an upper

neighbor of x, and all lower neighbors of y are also minimal elements. Suppose

now z is another upper neighbor of x. Since z and y are incomparable, z must
be comparable to y; but z , y implies x , z , y , x, a violation of

orthocomplementarity, so we have z . y. Therefore all upper neighbors of

x with the exception of y are maximal elements, and indeed upper neighbors

of y. So if X denotes the set of lower neighbors of y (with x P X), then OP2n

is obtained from OP2n \ (X ø X) by the construction described above, i.e.,

the orthoposet on X ø X is complete, y is a minimal element in OP2n \

Fig. 1.



6 Brass

(X ø X), and we join each element of X as a lower neighbor to y and each

element of X as an upper neighbor to y.

3. EXCLUDED SUBSTRUCTURES AND SUBORTHOPOSETS OF
HEIGHT TWO

Any structure interesting as an excluded substructure must be such that

we can force it to occur in an orthoposet OP2n as suborthoposet by the

assumption of a lower bound on the number of comparable pairs in OP2n.

Therefore it must be a common substructure of all extremal orthoposets.

Especially it must be of height 2, since the complete orthoposet is extremal
and of height 2. Also, it has to occur in the two-chain orthoposet.

We can describe orthoposets OP2m of height 2 by a graph G (OP2m),

with the complementary pairs {x, x} as vertices, and joining two vertices

{x, x} and {y, y} by an edge iff there are comparable pairs in {x, x, y, y}.

This defines a bijection between the graphs on m vertices and the orthoposets

of height 2 with 2m elements, which maps the complete graph Km on the
complete orthoposet K OP

2m [the orthoposet OP(G) of a graph G 5 (V, E) having

elements V ø V, with v , u iff {u, v} P E].

Now an orthoposet OP2m of height 2 occurs in a two-chain orthoposet

of cardinality 2n $ 2m as suborthoposet iff its graph is bipartite, for any

odd cycle in the graph would lead to a sequence of comparabilities connecting
an element and its complement (which cannot occur if the orthoposet consists

of two complementary chains). This is still not sufficient for OP2m to occur

in all extremal orthoposets, for the right orthoposet in Fig. 2 (with graph

K3,3) does not occur in the left one (which is extremal).

But this is an exception which does not occur if 2n is sufficiently big

compared to the cardinality 2m of the excluded suborthoposet. We have:

Theorem 2. Let n . 1/2(m 2 1)2, and let OP2m be an orthoposet with

2m elements which is of height 2 and has a bipartite graph. Then OP2m occurs

as suborthoposet in each extremal orthoposet OP2n of 2n elements.

By Dilworth’ s theorem (Brass, 1995; Dilworth, 1950), each poset with
at least (m 2 1)2 1 1 elements contains a chain of length m or an antichain

Fig. 2.
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of cardinality m. These induce a two-chain suborthoposet or a complete

suborthoposet of 2m elements each. But each orthoposet of height 2 with a

bipartite graph occurs as a suborthoposet of the complete orthoposet as well
as of the two-chain orthoposet of the same cardinality.

So for each height-2 poset OP2k with bipartite graph G the question for

the maximum number of comparable pairs in an orthoposet of 2n elements

without OP2k as suborthoposet is a nontrivial question. We can show that

this is asymptotically the same as the corresponding question for graphs. The

corresponding graph problem, the maximum number of edges in a graph
with n vertices without G as subgraph, immediately gives a lower bound for

the orthoposet problem. For, the bijection of orthoposets of height 2 and 2n
elements and graphs with n vertices maps graph-edges {x, y} on pairs (x ,
y, y , x) of comparable pairs, and maps subgraphs on suborthoposets. But

orthoposets with bigger height cannot be much better. We have:

Theorem 3. Let Gk be a bipartite graph, ex(n, Gk) the maximum edge-

number of a graph with n vertices that does not contain Gk as a subgraph,

and OP2k the orthoposet of height 2 that corresponds to Gk. Then the maximum

number of comparable pairs in an orthoposet with 2n elements that does not
contain OP2k as a suborthoposet is between 2 ? ex(n, Gk) and (k 2 1

2
) ? ex(2n, Gk).

Unfortunately, the problem of determining ex(n, Gk) for bipartite G is

notoriously difficult; it is known as the `degenerate’ case of the TuraÂn problem

(Simonovits, 1983). A global bound ex(n, Gk) 5 O (n 2 2 2/k) follows from the

KoÈ vari±TuraÂn±SoÂs theorem ex(n, Kr,s) 5 O (n 2 2 1/s), since any bipartite graph

Gk is subgraph of a complete bipartite graph Kr,s with the same vertexset

(k 5 r 1 s). For more bounds on specific graphs see (Simonovits, 1983).
An especially interesting case seems to be the case of an excluded 4-cycle

C4, since the orthoposets corresponding to the extremal graphs (ErdoÈ s±Renyi

graphs; FuÈ redi, 1996) are the lattices of the finite projective planes.

To prove Theorem 3, we note that the orthoposet OP2n may not contain

a chain of length k, otherwise it contains all orthoposets OP2k that have

bipartite graphs. So we may decompose the orthoposet OP2n into k 2 1
antichains A1, . . . , Ak 2 1 by repeatedly removing the sets of all maximal and

of all minimal elements. Any comparable pair x , y belongs now to a unique

pair Ai , Aj of antichains with x P A i , y P Aj. To count the comparable pairs

in OP2n , we have to bound the number of comparable pairs between any

two of these antichains. For this we note that if the comparability graph of

the height-2 poset defined on Ai ø A j contains Gk as subgraph, then the
orthoposet defined on Ai ø Aj ø Ai ø A j contains the corresponding orthoposet

OP2k as suborthoposet. Therefore there are at most ex(2n, Gk) comparable

pairs between Ai and A j. Taking the sum over all antichain pairs proves

Theorem 3.
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4. THE EDGE NUMBER OF THE HASSE DIAGRAM OF AN
ORTHOPOSET

A complexity measure that is much easier to handle is the number of
edges of the Hasse diagram. Each edge {x, y} corresponds to a comparable

pair x , y, so the number of edges is at most n 2 2 n in a 2n-element

orthoposet. This number is reached by the complete orthoposet K OP
2n ; and the

complete orthoposet is the only extremal orthoposet, since all other OP2n

with maximum number of comparable pairs contain chains of length 3, and
in a chain of length 3 there is a comparable pair that is not edge of the Hasse

diagram. Since we have only one extremal structure, any suborthoposet of

the complete orthoposet, i.e., any orthoposet of height 2 can be used as

excluded substructure. By our bijection this directly mirrors the graph prob-

lem, since there is always an extremal orthoposet OP2n (without OP2k as

suborthoposet) that is of height 2. For, we may find in each orthoposet OP2n

that is of height greater than 2 a suborthoposet OP*2n with the same elements

and at least the same number of edges in the Hasse diagram, and smaller

average height of the elements. We have just to pick a chain x , y , z with

x, z being neighbors of y, remove the comparability of x and y (losing one

edge), and keep all others (especially those of x to all upper neighbors of y,
which generates at least one new edge). So we have:

Theorem 4. Let Gk be a graph and OP2k the orthoposet of height 2 that

corresponds to Gk. The maximum edge number of the Hasse diagram of an

orthoposet OP2n that does not contain OP2k as a suborthoposet is 2 ? ex(n, Gk).

For graphs Gk that are not bipartite these numbers are asymptotically

known; by the ErdoÈ s±Stone theorem (Simonovits, 1983), they are essentially
complete multipartite graphs with one class less than the chromatic number

of the excluded subgraph. If the excluded subgraph is complete, the problem

is solved by TuraÂn’ s theorem (Simonovits, 1983): We may construct the

orthoposet OP2n with maximum edge number that does not contain a complete

orthoposet K OP
2k as suborthoposet by partitioning the lower elements x1, . . . ,

xn into k 2 1 classes

{x1, . . . , x ë n/k 2 1 û }, . . . , {x ë (k 2 2)n/k 2 1 û , . . . , xn}

of nearly equal cardinality and defining xi , xj iff xi and xj are in different

classes. Figure 3 illustrates this for k 5 3 and n 5 7.

Fig. 3.
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